IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 1, JANUARY/FEBRUARY 2023

37

Maximal Quasi-Cliques Mining in
Uncertain Graphs

Lianpeng Qiao™, Rong-Hua Li*, Zhiwei Zhang

, Ye Yuan

, Guoren Wang™, and Hongchao Qin

Abstract—Cohesive subgraph mining is a fundamental problem in the field of graph data analysis. Many existing cohesive graph
mining algorithms are mainly tailored to deterministic graphs. Real-world graphs, however, are often not deterministic, but uncertain in
nature. Applications of such uncertain graphs include protein-protein interactions networks with experimentally inferred links and
sensor networks with uncertain connectivity links. In this article, we study the problem of mining cohesive subgraphs from an uncertain
graph. Specifically, we introduce a new (e, y)-quasi-clique model to model the cohesive subgraphs in an uncertain graph, and propose
a basic enumeration algorithm to find all maximal («, y)-quasi-cliques. We also develop an advanced enumeration algorithm based on
several novel pruning rules, including early termination and candidate set reduction. To further improve the efficiency, we propose
several optimization techniques. Extensive experiments on five real-world datasets demonstrate that our solutions are almost three

times faster than the baseline approach.

Index Terms—Maximal («, y)-quasi-clique, uncertain graphs, cohesive subgraphs, enumeration algorithm

1 INTRODUCTION

EAL-WORLD graphs, such as social networks, protein-pro-

tein interaction (PPI) networks, and communication net-
works, often contain cohesive subgraph structures. Mining
cohesive subgraphs from a graph is an important problem in
the field of network analysis which has attracted much atten-
tion[1], [2], [3], [4] [5], [6], [7], [8], [9]. Among all the cohesive
subgraphs, clique is the densest one, which requires that each
node must connect to all the other nodes [10], [11]. However,
the constraint of clique is too restrictive combined with the
fact that most real-world datasets are incomplete. Considering
this, y-quasi-cliques are proposed as it requires all the nodes
in the subgraph are adjacent to at least [y - (n —1)] other
nodes, where y € (0, 1] and n denotes the number of nodes in
the graph.

Many real-world graphs, however, are uncertain in nature
where each edge is associated with a probability as shown in
Fig. 1. The uncertain graph has been widely used in many
applications to represent the uncertain connectivity links
between objects, such as PPI networks with experimentally
inferred links, social networks with uncertain links, and sen-
sor networks with uncertain connectivity links. Some cohesive
subgraph mining problems have recently been studied on
uncertain graphs including the core decomposition [12], the

o Lianpeng Qiao is with the Department of Computer Science, Northeastern
University, Shenyang, Liaoning 110004, China. E-mail: qiaolp@stumail.
neu.edu.cn.

o Rong-Hua Li, Zhiwei Zhang, Ye Yuan, Guoren Wang, and Hongchao Qin
are with the Department of Computer Science, Beijing Institute of Technol-
ogy, Beijing 100081, China. E-mail: {lironghuascut, qhc.neu)@gmail.com,
cszwzhang@comp.hkbu.edu.hk, yuan-ye@bit.edu.cn, wanggrbit@126.com.

Manuscript received 17 June 2020; revised 21 May 2021; accepted 22 June 2021.
Date of publication 29 June 2021; date of current version 16 January 2023.
(Corresponding author: Guoren Wang.)

Recommended for acceptance by M. Piccardi.

Digital Object Identifier no. 10.1109/TBDATA.2021.3093355

truss decomposition [13] and the maximal clique enumeration
problems [14], [15], [16].

Challenges and Contributions. In this paper, we propose a
maximal (e, y)-quasi-clique model to represent a maximal
y-quasi-clique in an uncertain graph. Specially, for an
uncertain graph G, we call a set of nodes C(V, E) a maximal
(v, y)-quasi-clique if (1) C'is a y-quasi-clique and the proba-
bility of each node’s degree in C being larger than or equal
to [y (JV|—1)] is not less than &, and (2) C is a maximal
node set satisfying (1). For an uncertain graph G, each edge
is associated with a probability, so the degree of each node
in G is also associated with a probability. There are two
main reasons that affect the efficiency of the maximal quasi-
clique mining problem on an uncertain graph. The first one
is that some nodes are not likely to be included into some
quasi-cliques, but we still need to check whether these
nodes satisfy the constraints of quasi-cliques in an uncertain
graph. The other one is that the time cost of probability cal-
culation and updating of nodes is often very expensive. In
fact, even simple problems can become complex in the con-
text of the uncertain graph. For example, to determine
whether there is a path of length k between two given nodes
in a deterministic graph, we can solve the problem within a
polynomial time. However, in an uncertain graph, the prob-
lem becomes a #P-complete problem. Sanei-Mehri et al. [17]
proved that even the problem of maximality checking of a
quasi-clique in a deterministic graph is NP-hard. Enumerat-
ing all the maximal («, y)-quasi-cliques from an uncertain
graph is an harder problem which demonstrates that our
problem is also a #P-complete problem.

To tackle these challenges, we propose several novel and
efficient algorithms to find all the quasi-cliques. Specifically,
with the degree measurement of nodes and the (e, y)-quasi-
clique definition, we first design a basic enumeration algo-
rithm to find all the maximal («, y)-quasi-cliques. By analyz-
ing the properties of («,y)-quasi-clique in an uncertain

2332-7790 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:56:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5401-6222
https://orcid.org/0000-0002-5401-6222
https://orcid.org/0000-0002-5401-6222
https://orcid.org/0000-0002-5401-6222
https://orcid.org/0000-0002-5401-6222
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0003-3482-6831
https://orcid.org/0000-0003-3482-6831
https://orcid.org/0000-0003-3482-6831
https://orcid.org/0000-0003-3482-6831
https://orcid.org/0000-0003-3482-6831
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0003-4364-0633
https://orcid.org/0000-0003-4364-0633
https://orcid.org/0000-0003-4364-0633
https://orcid.org/0000-0003-4364-0633
https://orcid.org/0000-0003-4364-0633
mailto:qiaolp@stumail.neu.edu.cn
mailto:qiaolp@stumail.neu.edu.cn
mailto:lironghuascut@gmail.com
mailto:qhc.neu@gmail.com
mailto:cszwzhang@comp.hkbu.edu.hk
mailto:yuan-ye@bit.edu.cn
mailto:wanggrbit@126.com

38

Fig. 1. An uncertain graph.

graph, we then propose an advanced algorithm with several
carefully-designed pruning techniques, which can signifi-
cantly reduce the search space and terminate the enumeration
procedure early. Since all the proposed algorithmces rely on
the probability calculation for the nodes, we further reduce
the cost by designing a dynamic programming algorithm to
update the probabilities. Furthermore, a series of optimiza-
tions are also proposed to speed up the enumeration proce-
dure. Our contributions are summarized as follows.

e We formalize the problem to mine maximal («, y)-
quasi-cliques from an uncertain graph, where a proba-
bilistic function is designed to measure the degree of
the nodes in uncertain graphs. (Section 2)

e By analyzing the properties of («, y)-quasi-clique, we
first propose a basic enumeration algorithm to find
all maximal (e, y)-quasi-cliques (Section 3.1). Then,
to improve the efficiency, we develop an advanced
enumeration algorithm with several effective prun-
ing methods which include early termination and
candidate set reduction (Sections 3.2, 3.3, and 3.4).
For candidate set reduction, the nodes that do not
belong to any (e, y)-quasi-cliques will be removed
without enumerating the graphs with them. For
early termination, the enumeration will stop if the
current node set cannot form an (e, y)-quasi-clique.
In addition, for the probability computation, we pro-
pose a new probability update method based on a
dynamic programming framework (Section 4).

e We conduct extensive experiments on several real
datasets, and the results show that the proposed
techniques can find the (e,y)-quasi-cliques effec-
tively and efficiently (Section 6).

Organization. Section 2 introduces the model of («, y)-quasi-
clique and formulates our problem. The pruning techniques
and algorithms for mining maximal (e, y)-quasi-cliques from
an uncertain graph are proposed in Section 3. Probability cal-
culation and update methods are proposed in Section 4. Sec-
tion 5 introduces several pruning methods used by existing
works to further speed up the algorithm 3. Note that since
there are several methods that are not fully applicable to uncer-
tain graph, we have made appropriate adjustments and still
described here as contributions to existing work. Experimental
studies are presented in Section 6. We review the related work
in Section 7, and conclude this work in Section 8.

2 PRELIMINARIES

In this section, we first introduce some useful notations, and
then formulate our problem. Table 1 lists the main symbols
used in this paper and their descriptions.

IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 1, JANUARY/FEBRUARY 2023

TABLE 1
Notations
Notations Descriptions
G G = (V, E, p), an uncertain graph
G the deterministic graph of G
G(X) the induced graph of X in G
G(X the induced graph of X in G
N¢(v) the set of neighbours of node vin G
degg(v) the degree of node vin G
Gp the set of the possible worlds of G
G’I’f (v) the set of the possible worlds of G where

v's degree equals k
the probability that the degree of v equals
kin G

Pe(v, k) the probability that the degree of v is
greater than or equals kin G

N{ (v) the set of nodes that are within a distance
of k fromnode vin G

indeg” (v) the degree of node v in X

indegmin(X) the smallest indeg® in X

Lin the lower bound of the number of nodes

that can be added to X to form an
(e, ¥)-quasi-clique

Let G(V, E, p) be an uncertain graph, where V' denotes the
set of nodes, E is the set of edges, and p is a function that
assigns the probability of existence to each edge e € E. For a
node set X CV, G(X) = (X, Ex,p) is an induced uncertain
subgraph of X in G if Ex = {(u,v)|(u,v) € E,u,v € X}. The
deterministic graph of G, denoted as G, is obtained by
ignoring all probabilities of the edges in G. Let Ny (u) be the
set of neighbors of node u in G, and degg(u) = |N (u)] is the
degree of node u in G.

For an uncertain graph G(V, E,p), we suppose that the
existence of different edges in £ is mutually independent.
The possible world graphs of G are the deterministic graphs
which contain all the nodes in V' and the edges sampling
from E based on the function p. Given an uncertain graph
G(V, E,p) and m = |E|. Possible world graphs of G can be
regarded as G, = {Qll), Q]Q], - gfj"} The probability of getting
a possible world graphs G, where i€ [1, 2" from the
uncertain graph G is:

= I »(e)

FEE

(1)

T @-ple).

e€E\E, A

The y-Quasi-Clique Model in a Deterministic Graph. Here
we first introduce the problem of mining y-quasi-cliques
from a deterministic graph.

Definition 1 (y-quasi-clique). Given a deterministic graph
G(V, E) and a node set X, G(X) is a y-quasi-clique (0 < y <
1) if G(X) is connected, and for every node v € X, deggy,

(v) = Ty (1IX] = D]

According to Definition 1, G(X) is a maximal y- quasi-cli-
que of G if G(X) is a y-quasi-clique, and there does not exist
another node set Y such that Y > X and G(Y) is a y-quasi-
clique.

The y-Quasi-Clique Model in an Uncertain Graph. Combin-
ing the definition of possible world graphs of an uncertain

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:56:09 UTC from IEEE Xplore. Restrictions apply.

QIAO ETAL.: MAXIMAL QUASI-CLIQUES MINING IN UNCERTAIN GRAPHS

graph G, finding a y-quasi-clique in G is equivalent to iden-
tify the set of all possible world graphs in which the node
set is a y-quasi-clique. The probability of the y-quasi-clique
in an uncertain graph is the sum of the probabilities of these
identified possible world graphs.

Given an uncertain graph G(V, E, p), we can get at most
2/El possible worlds that are eligible for a y-quasi-clique in
G based on the possible-world semantics. In accordance
with upon content, we can get that the complexity of the
number of the qualified possible world graphs in the uncer-
tain graph with m edges is O(2™). Clearly, given an uncer-
tain graph G(V, E, p), finding all eligible possible worlds is
impractical as the number of the qualified possible world
graphs in the uncertain graph is too large. The general turn-
around adopted is to assign a score to each node based on
the probability of the node to be part of a special subgraph
structure, and then return the maximal node sets that satisfy
the constraints, such as k-core [12]. Similar to [12], [18], we
refer that Pg(v, k) is the sum of probabilities of possible
world graphs of uncertain graph G in which the degree of v
is no smaller than k, and Pr¢(deg(v) = k) to denote the prob-
ability of v's degree being equal to k in G. The detailed defi-
nition is as follows.

Definition 2 (k-probability). Given an uncertain graph G =
(V,E, p) and a node v € V, we call Pg(v, k) as v's k-probability
in G, which is the sum of the probabilities of possible world
graphs of uncertain graph G in which the degree of v is no less
than k.

Definition 3 ((«, y)-quasi-clique). Given an uncertain graph
G(V, E,p), parameters a and y. An induced subgraph H(Vy,
Ey,p) is an («,y)-quasi-clique in G if the probability, such
that each node v € Vi has a degree no less than [y - (|Viy| —
1)] inside H, is no less than «, i.e., Yv € Vy, Py(v,
[v-(Val =1)]) = e

According to Definition 3, H is a maximal («, y)-quasi-
clique if H is an (o, y)-quasi-clique and there does not exist
another node set Y such that Vy C Y and G(Y) is an (e, y)-
quasi-clique.

The state-of-the-art definition of the uncertain clique is
(k, 7)-clique proposed by Li et al. [16]. There are two con-
straints in this definition. One of the constraints is the total
number of the vertices in a (k, 7)-clique must be no smaller
than k, the other is that the product of the probabilities of all
edges in (k, 7)-clique must be no smaller than 7. Combining
with the definitions of (k, t)-clique and («, y)-quasi-clique,
we can find that the uncertain clique is a special case of our
uncertain quasi-clique. When y is set to 1, the maximal
(@, y)-quasi-cliques we get in the uncertain graph are actu-
ally the maximal uncertain cliques. But because uncertain
quasi-clique does not have the downward closure property
as uncertain clique and the state-of-the-art definition of the
uncertain clique is fundamentally different from Definition
3 when y # 1. The method of uncertain clique mining can-
not be simply applied to the problem of uncertain quasi-cli-
que mining.

Combining the content of Definition 3, it will boil down
to the state-of-the-art definition of y-quasi-clique in the
deterministic graph if we remove the probabilities of the
edges in the uncertain graph G. Compared with y-quasi-

39

clique, the uncertain quasi-clique mining spends much time
in probability calculation and update. Therefore, the uncertain
quasi-clique mining is more expensive than y-quasi-clique.
The method of y-quasi-clique mining can be applied to the
uncertain quasi-clique mining problem after adjustment. The
process of the method is as follows: (1) find all the y-quasi-cli-
ques in the resulting deterministic graph by ignoring all edge
probabilities of the given uncertain graph, and (2) get the max-
imal (o, y)-quasi-cliques by filtering out the y-quasi-cliques
that do not satisfy Definition 3. We compare this method with
the other three methods as another baseline method and
finally decide not to use this method as the baseline method.
For details, please refer to the first paragraph of Section 6.3.

For an uncertain graph, many («, y)-quasi-cliques are often
very small and may be of no practical use. Similar to the prob-
lem of mining quasi-cliques from deterministic graphs [8], [9],
it will be more useful to find large (o, y)-quasi-cliques in
uncertain graphs.

Problem Statement. Given an uncertain graph G and three
parameters «, y and min,, mining the («, y)-quasi-cliques
from G is equivalent to derive all the maximal (e, y)-quasi-
cliques of G in which every maximal (o, y)-quasi-clique H
satisfies |V (H)| > min.

Example 1. Consider an uncertain graph G(V, E,p) shown
in Fig. 1. Let « = 0.8, y = 0.6 and min, = 3. Then, we can
see that the induced graph of X = {v, v, vs, v7} is a maxi-
mal (o, y)-quasi-clique. With k = [y - (|X| — 1)] = 2, it has
Po(x)(vi, k) = Pg(x)(v2, k) = 0.9965, and Pg(x)(vs, k) =
Pex)(vr, k) = 0.9988. Also, there does not exist a node set
Y D X such that Pgy)(u, [¥-(]Y|—=1)]) > 0.8 for each
nodewu €Y.

3 THE PROPOSED ALGORITHMS

3.1 Basic Approach to Mine (v, y)-Quasi-Clique

To show how to mine an («, y)-quasi-clique from the uncer-
tain graph G = (V, E, p), we first focus on the computation
of Pg(v,[y- (V] —1)]) for each node v e V. As Pg(v,[y-
(IVI—=1)]) is the [y - (]V| — 1)]-probability of v in G, then
we have the following equation:

dege (v)

Fo(v, [y-(IVI=1)1) Prg(dega(v) = i)

i=[y-(VI-D]

> Pr(@).

G'CGh(v)

(2)

In Equation (2), G&(v) is the set of possible world graphs
of G where v's degree is equal to k, ie., Gllj(v) ={G|¢
C Gy, dege (v) = k}.

A basic approach to finding all («, y)-quasi-cliques is to
enumerate all the candidate subgraphs. Fig. 2 shows the
enumeration procedure for G. Note that we use X, cand(X)
to represent the nodes that we have searched and the candi-
date nodes that can form an («, y)-quasi-clique. In order to
avoid duplication, we sort the nodes in order and extend
the set X by this order.

For example, in the enumeration procedure shown in
Fig. 2, nodes are sorted in lexicographic order. In each itera-
tion, a node v; is selected, and the subgraph with or without

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:56:09 UTC from IEEE Xplore. Restrictions apply.

40

{:v
VAN
i V-{vi} {:V-{i}
X % X k3

i} V-{r,vs} o b V-pnd V-

Fig. 2. lllustration of the enumeration procedure.

v; will be checked. The pseudo-code of this algorithm is
shown in Algorithm 1 and Algorithm 2.

Algorithm 1. Baseline Approach

Input: G(V, E,p) is the uncertain graph; y is the minimum
degree threshold; « is the minimum probability
threshold; min, is the minimum size threshold.

Output: the node set Ry

: Remove the vertices whose degree is less than [y - (min, —
1)1 to get a new node set V’;

1 if |[V'| < min, then

return NULL;

: Compt/lte the Py (v, [y - (V'] = 1)]) values Vo € V';

if G(V') is an («, y)-quasi-clique then
Ra”.push(V/);
return Ry;

. Ry +— NaiveEnum(0,V,y,a, min,);

: Return R,;

—_

Algorithm 2. NaiveEnum(X, cand(X), y, o, mins)

Input: X is the initial node set; cand(X) is the candidate
extension of X; y is the minimum degree threshold; «
is the minimum probability threshold; min, is the
minimum size threshold.

Output: the node set R.

1: if | X| + |cand(X)| < min, then

2: return R;

3: Compute the Py (x)(v, [y - (| X] —1)]) values Vv € X;

4: if |cand(X)| = 0 and G(X) is an (e, y)-quasi-clique then

5 R« RUXIifAY € R, suchthat X CY;

6: return R;

7: u « choose the first node in cand(X);

8: NaiveEnum(X, cand(X)\{u}, y,a, min,);

9: X — X U{u}, cand(X) « cand(X)\{u};

0: NaiveEnum(X, cand(X), y, o, miny);

1: Return R;

First, Algorithm 1 removes the nodes with a degree smaller
than [y - ([V] —1)] and gets the new node set V' (line 1).
Before using a node v to extend X, Algorithm 1 uses the mini-
mum size constraint to reduce the search space (lines 2-3).
Then, F:G(V/)(v, [y- (V'] =1)]) is computed for v € V' (line 4).
If G(V') is an («,y)-quasi-clique, it must be a maximal
(ar, y)-quasi-clique, and the nodes are pushed into R,y (lines
5-7). After removing redundant nodes, Algorithm 2 is invoked
to enumerate all maximal («, y)-quasi-cliques (line 8).

Algorithm 2 first judges whether |X| + |cand(X)| meets
the constraint of the minimum size threshold. If the con-
straint is not met, the algorithm can be terminated earl

IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 1, JANUARY/FEBRUARY 2023

(lines 1-2). Then Algorithm 2 judges whether G(X) is an
(o, y)-quasi-clique. If there is no ¥ O X in R, we push X
into R and return R (lines 3-6). If cand(X) is not empty, the
algorithm will use the nodes in cand(X) to extend X and
recursively invokes itself until the result set is returned
(lines 7-11). Note that we use a prefix tree to help us remove
non-maximal quasi-cliques. This method has been used pre-
viously in paper [9]. The update complexity of prefix-tree is
O(n). The complexity of probability computing is O(ynm) =
O(nm) as shown in Section 4.1. The time complexity of
Algorithm 2 should be O(2"n*m) where n is the number of
the nodes in the uncertain graph, and m is the number of
the edges in the uncertain graph.

Example 2. Consider the uncertain graph G in Fig. 1. Let «
=0.8, y = 0.6 and min, = 3. First, there is no node removed
from V, since the degrees of all the nodes are larger than
[0.6 - (3 —1)] = 2. Then we calculate Py (v;, [y - (|[V(H)| —
1)]) for v; € V(H) based on Equation (2). Consider the
node vg, we can derive that Pg(vg,6) = 0.0146 + 0.1687 +
0.816 = 0.9701 > 0.8. Similarly, for vy, it has P;(vy,6) =
0 < 0.8. The graph G is not an («, y)-quasi-clique. X is
initialized as empty and cand(X) is set as V to invoke
Algorithm 2. Assume v; is chosen as line 7 in Algorithm
2. So, it holds Pgx)(v, [y - (|X] —=1)]) =0 for X U {v}.
The procedure is recursively invoked until X contains
{v1,v2,v6,v7}. Pgix)(vi, [y - (|X] = 1)]) for nodes in X
with ¢ € {1,2,6,7} are 0.9965, 0.9965, 0.9988, and 0.9988
respectively. Thus, a maximal («, y)-quasi-clique is found.

3.2 Advanced Approach to Find («, y)-Quasi-
Cliques
In this section, we present several pruning techniques that
can significantly reduce the size of the graph. Given an
uncertain graph G, intuitively, for each node v, it needs to
consider two conditions if v belongs to a («, y)-quasi-clique.
The first is the degree condition. If the degree of v in G is
smaller than [y - (min, — 1)] in G, then v can not appear in
any y-quasi-cliques in G. In this scenario, v cannot belong to
any (o, y)-quasi-cliques in G. The other condition is the pos-
sibility of the edges. That is, for a node v whose degree
equals [y - (min, —1)], if the minimum probability of the
edges connected to v is less than « or the product of the
probability values of all the edges connected to v is less than
«, then v would not be contained in any (e, y)-quasi-cliques.
In the following, we will introduce several pruning tech-
niques, which can be divided into two categories: Early Ter-
mination and Candidate Set Reduction.

3.3 Early Termination

In this section, we introduce the conditions to early terminate
the enumeration procedure. Assume that X is a node set that
is generated during the enumeration procedure as shown in
Algorithm 2. For a node v in the graph G(V, E, p), each edge
(ui,v) has an associated possibility p(u;,v), which indicates
the possibility of the existence of this edge. We use p,,(v) to
denote the maximal possibility among all the edges (u,v) for
the node v. Then, if v belongs to an («, y)-quasi-clique H, it
indicates that Py(v,k) >« for k= [y - (Vx| —1)]. Also, as
shown in Equation (2), if p(u;,v) increases, P; (v, k) will also
increase, and the corresponding («,y)-quasi-cliques may

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:56:09 UTC from IEEE Xplore. Restrictions apply.

QIAO ETAL.: MAXIMAL QUASI-CLIQUES MINING IN UNCERTAIN GRAPHS

contain more nodes. Based on this, we can derive the following
results.

Theorem 1. Given two uncertain graphs G(V, E,p) and G'(V,
E,p') with p'(e) > p(e) for each e € E. Then for a maximal
(o, y)-quasi-clique H in the graph G, there exists at least one
maximal («, y)-quasi-clique H' in G', such that Vi C Vi

Based on Theorem 1, with a larger possibility associated
with each edge, the («,y)-quasi-cliques may contain more
nodes and edges. Given an uncertain graph G(V, E,p), let
G'(V, E,p') be a graph which contains the same node set and
edge setas G. The only difference is that for each edge (u,v) in
G, the possibility associated with (u,v) is larger than that in
G. Then, itis easy to derive that every (e, y)-quasi-clique in G
is a subset of at least one (o, y)-quasi-clique in G'. If an
(v, y)-quasi-clique G(S) in G’ is found, it is the upper bound
of the (e, y)-quasi-clique G(C') in G which satisfies C' C S.

The Lemma 1 in [9] is based on the property that the
diameter of the y-quasi-clique in the deterministic graph is
no more than 2 if y € [0.5,1] to prune the candidate set of
the initial vertex set X. Note that we use [0.5,1] as the value
range of y by default, and the specific content is explained
in Section 5. Inspired by Lemma 1 in [9], we propose our
Lemma 1. Different from that, given an uncertain graph G,
our Lemma 1 prunes the candidate vertex set of X based on
the upper bound of the degree k,,, that all the vertices v €
X satisfy Po(v, kinas) > .

Lemma 1. Given an uncertain graph G(V, E, p). For a node set
X C V, if there exists a node set Y C V such that X C 'Y and
G(Y) is an (w, y)-quasi-clique, it has |Y| < k"%—i— 1, where
kmaz 1S the maximum k satisfies Pe(v, k) > « for each v € X.

Proof. As we know X CY and G(Y) is an («, y)-quasi-cli-
que. Then, for every node v € X, we have Pgy)(v, k) > «
where k= [y - (|]Y| — 1)]. Since Y is a subset of V we can
derive the following inequality based on Theorem 1.

[Ng ()l
Ne(
Pow (vk)<PGvk< (‘G)

“M

(pm ()" - (1 = p(v)) N6 Wi

Since Py (v, k) > a, we have the following inequality:

[Ng ()]

i=k

Let L,,;, be the minimum number of nodes that can be
added to X to form an (e, y)-quasi-clique. Next, we can get
the maximal %, i.e., k..., satisfying the above inequality for
all v e X where k € [[y - (|X| 4+ Lmin — 1)], |Ne(v)|]- And
we are able to obtain that [y - ([Y| — 1)] < k. Then, we
have [knao/v] = [[v-(IY|=D1/v] 2 ly- (Y| =1)/v] =
|Y| — 1. Therefore, we have |Y| < | ke /y] + 1. O

In Lemma 1, we consider the upper bound of the size for
the (e, y)-quasi-clique in G. Considering the situation that
we aim to find an (o, y)-quasi-clique in which it contains a
node set X in the graph G, we use indeg” (u) to denote the

41

number of nodes in X which are linked to u. If there exists a
node u € X, such that indeg®(u) < [y-(|X|—1)], then at
least one node should be added to X to increase the degree
of u to form an («, y)-quasi-clique. We use indeg,(X) to
denote the smallest indeg® (u) for all u € X and at least ¢
nodes should be added to X to increase the degree of the
nodes in X, then it has Ly, = min{t|indegmn(X) +t >
[y (|X]+t —1)]}. Thus, we have the following property.

Property 1: Given an uncertain graph G(V, E,p) and a
node set X C V. If Ly, +|X]| > "”%—i— 1, there does not
exist an (o, y)-quasi-clique containing X.

Property 1 is inspired by the Lemma 10 in [9]. Given an
initial vertex set X, the candidate vertex set Y and L,.;,,
which means the lower bound of the number of vertices
that can be added to X. The Lemma 10 in [9] is based on the
fact that the degree of each vertex v € X within XUY
should be no small than [y - (|X|+ L — 1)]. Different
from that, our Property 1 is based on the fact that the upper
bound of the degree k., that all the vertices v € X satisfy
Pe(v, kaz) > o should not satisfy L, + | X| > k"% + 1.

Example 3. Consider the uncertain graph G shown in Fig. 1.
Let « = 0.95, y = 0.8 and min, = 3, and assume that the
initial node set X = {vy,v2}. Then, we can derive the
extension candidate set of X that is cand(X) = {vs, vy, vs,
Uﬁ,U7,U8,’Ug,1)1()} It has |NG(1)1)| =3 and ‘N(‘('UQ)‘ =4.
Then, we find that when k=3, the inequality Z‘ ‘()]

(%) - () (1~ pu() ¢ > & does ot hold

2

for all nodes in X, since ZL‘Z%M)‘ ('NG;“”» (P (v1)) - (1 =

P (01)) M = (3 (0.98)7 - (0.02)° = 0.9412 < 0.95.
When k = 2, the inequality holds for all the nodes in X
and the values are 0.99882 and 0.99997 respectively.

3.4 Candidate Set Reduction

In this section, we introduce the optimization techniques to
reduce the candidate set to generate («,y)-quasi-cliques.
Given an uncertain graph G and a node set X, we aim to
enumerate all the node sets containing X and check whether
they are (o, y)-quasi-cliques or not. We use cand(X) to
denote the set of nodes that can form («, y)-quasi-cliques
with X. As shown in Theorem 1, with the larger probability
values of the edges incident to v, Pr(v,k) will increase as
well. Considering all the edges incident to the node v, py, (v)
denotes the maximum possibility of all the edges incident to
vin G. Then we have the following theorem.

Theorem 2. Given an uncertain graph G(V, E, p) and a node set
X. Assume that there exists an (o, y)-quasi-clique G(Y) and
X CY. If a node v satisfies Pg(v,k) < a where k= [y
(I Lmin +1X|| =)] and Lpin = min{t|indegmin(X) + t >
[y (I X]|4+t—1)}, then we havev ¢ Y.

Proof. For a node v € cand(X), Pg (v, k) is the k-probability of
node v in G where k = [y - (|Lyn + | X| — 1)]. We can get
that Po(v,k) < 327 (%) (pra(0)' (1 = ()"
where N (v) is the set of neighbours of v in G and p,,(v) is
the maximal probability among the edges incident to v in

R kaww (\N(;vf(vn) (P () (1 = P (0)) N6 OIF < o then
the node v can be removed from the candidate set cand(X).

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:56:09 UTC from IEEE Xplore. Restrictions apply.

42

The nodes in the candidate set should be updated after
removing v from cand(X). We remove the nodes iteratively
from cand(X) until there is no node can be removed
further.]

Theorem 2 prunes a vertex based on the upper bound of
the probability that the degree of the vertex is no smaller
than the minimum threshold L,,;, of the degree. L, is the
lower bound of the number of vertices that can be added to
the initial vertex set X to form a y-quasi-clique proposed
in [19].

Algorithm 3. AAvEnum(X, cand(X), v, &, miny)

Input: X is the initial node set; cand(X) is the candidate
extension of X; y is the minimum degree threshold; «
is the minimum probability threshold; min, is the
minimum size threshold.

Output: the node set R.

1: if |cand(X)| = 0 and G(X) is an («, y)-quasi-cligue then

R— RUXif#Y € R suchthat X CY;

return R;

1 if G(X U cand(X)) is an (o, y)-quasi-clique then

R — RUX Ucand(X) if BY € R, such that X U cand(X)

cy;

6: return R;

: Lpin — min{tlindegpin(X) +t > [y- (| X|+t—=1)1}

8: remove v from cand(X) if Pg(xucana(x))(v, k) < o; [Theorem
2]

9: compute

SN

N

Pa(xucand(x)) (v, [v - (| X| 4 |eand(X)| — 1)]), Vv € X U cand(X);
10: for each node v € X do
11: K, is the maximum value such that Pe(xucandx
12: kmax — mlnuEXku
13: if [X| + Lypin <222 4 1 then
14: u «+ choose a node in cand(X);
15 cand(X') — cand(X)\{u};
16: compute Pr(xucand(xy) (Vs [¥
€ X Ucand(X
17: AdvEnum(X, cand(X'), y, o, mins);
18 X' «— XU{u};
19: Compute Pgxn (v, [y - (|X| = 1)]), Vv € X';
20: AdvEnum(X',cand(X'),y, @, ming);
21: Return R;

(@, k) > a;

(| X] + Jeand(X)] = 1)]), Vo

Example 4. Consider the uncertain graph G(V, E, p) shown
in Fig. 1. Let @ = 0.8, y = 0.8 and min, = 3. Let the initial
node set X = {vy, v} and cand(X) = {vs, v4, vs, vg, v7, Us,
vg,v10}. Then, we have L;, =0 and k= [08-(0+2—
1)] = 1. For the node vy € cand(X), we get that Pg
(v10,1) =2-0.52 +0.52 = 0.75 < 0.8. Thus, we can rem-
ove vy from cand(X).

Armed with the Early Termination and Candidate Set
Reduction optimization techniques, we come up with Algo-
rithm 3. We first check if X or X U cand(X) is a maximal
(o, y)-quasi-clique. If it is, we put X into the result set R and
return R (lines 1-6). Then, we remove some nodes that are
not contained by any («, y)-quasi-cliques based on Theorem
2 (lines 7-9). Next, we derive the upper bound of the
(ar, y)-quasi-clique’s size which contains X based on Lemma
1 and stop the expansion of X based on Property 1 (lines 10-

IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 1, JANUARY/FEBRUARY 2023

12). If | X| + Lypin < k”;‘” + 1, the algorithm recursively calls
itself to expand X until there is a result set R being returned
(lines 13-21). We store all the («, y)-quasi-cliques in a prefix-
tree. (o, y)-quasi-cliques presented by internal nodes cannot
be maximal. For the («, y)-quasi-clique represented by a leaf
node, we will mark its subsets in the search tree as non-
maximal quasi-cliques. Finally, the («, y)-quasi-cliques rep-
resented by the leaf nodes and without being marked as
non-maximal quasi-cliques are valid results that will be put
into the result set R. The time complexity of Algorithm 3 is
O(2"n?m) where n is the number of the nodes in the uncer-
tain graph, and m is the number of the edges in the uncer-
tain graph.

Example 5. Consider the uncertain graph G shown in Fig. 1.
Let « = 0.95, y = 0.9 and mings = 3. The initial node set
X = {v1,v2, v5,v7} and the corresponding cand(X) = {vs,
vg, V10 }. First, we compute L,,;, of X based on Theorem 2,
which is Ly, = min{t|3+t>[09 - (4+t—1)]} =0 and
k=10.9-(0+4—1)] =3. For the node vy, we get that
Pe(xUcand(x))(V10,3) = 0. Then, we remove vy from cand
(X). We can derive that Pg(xucnd(x))(v,2) > 0.95 holds
for all nodes v € X and Pg(xucand(x)) (,3) > 0.9 does not
hold, because Pg(xucand(x))(v2,3) < () -0.98%-0.020 =
0.9412 < 0.95. We have k;,q,; = 2 and the upper bound of
the («, y)-quasi-clique’s size which contains X is |*maz| 4-
1= LOQ—QJ + 1 = 3. Clearly, |X| + L, is equal to 4. Accord-
ing to Property 1, there is no need to extend X with the
nodes in cand(X), since we have | X|+ Ly, > L"”%J +1
(lines 9-13).

Note that Algorithm 3 involves many probability calcula-
tions. In order to reduce the cost of probability calculations,
we introduce a dynamic programming method and propose
a new probability update approach, which will be intro-
duced in the following section.

4 PROBABILITY CALCULATION

In this section, we first introduce an efficient method to
compute Py (v, [y - (V —1)]) for v € V and then propose an
incremental updating approach to maintain them.

4.1 Computing Node Probability

Given an uncertain graph G = (V, E, p) where n = |V| and
m = |E|. For one node v € V, the [y - (|V| — 1)]-probability
of vin G can be expressed as:

degi(v)
Pa(v,[y-(VI-D) = > Pre(dega(v) =)
i=[y-(V|-1)]
[y-(IVI-1)1-1
S-S Praldego() =)
i=0

(3)

Note that Pz (v, [y - (V]| —1)]) is the sum of Pr(deg(v) =
i) where i€ [[y-([V[=1)], [N()[]. Let Eg(v) ={er, e,
edG(,,)} be the set of edges incident to node v in the uncer-
tain graph G, and E(v) = {e1, €2, ...,e,}(0 < h < dg(v)) is a
subset of Eg(v). Let G, = {V, E\(Eg(v)\Eh()), P} be the
uncertain subgraph of G without the edges in Eq(v)\EL(v).

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:56:09 UTC from IEEE Xplore. Restrictions gpply

QIAO ETAL.: MAXIMAL QUASI-CLIQUES MINING IN UNCERTAIN GRAPHS

Since f(h,i) = Pr(dg,(v) =1i), then for h € [1, ds(v)] we
have

fv(hvi) = pehf’v(h - 17i - 1) + (1 _peh)f’u(h - 17i) (4)

We need to compute all f,(h,4) values for all h € [1, dg
()], i€ 0, [y-(JV]—=1)]] so as to get the final f,(dz(v),?),
which corresponds to Pr(dg, (v) = 4). It will be more effi-
cient to update the v's i-probability in G, with an increasing
order of i. Based on Equation (3), we can easily get that
Ps(v, [y - (JV] = 1)]), and it can be derived in O([y - (V| —
1)]ds(v)) time. Computing the [y - (|V] — 1)]-probabilities
cfor all nodes v eV in G will cost O}, o [v- (V]| —1)]
ds(v)). Therefore, the complexity can be more compactly
expressed as O(ynm).

For a node u in the initial node set X, we can immedi-
ately get the Px(u, k) for k € [[y - (| X| = 1)], dgy,(v)] based
on the following equation.

PU(h:j) = pe;,,Pu(h -1,j- 1) + (1 - pe;,,)Pu(h - 1,j)
(5)

We can also observe that P,(h,j) = P(uley,...,en, J) =
Pr(deg(ules, ...,en) > j) for h € [0, dx(u)], and {ey,...,e,} is
the set of edges incident to v in G(X). Since P,(h,0) =1 for
h €0, dx(u)] and P,(0,5) = 0 for j € [1, dx(u)], we can get
Pu(h,j) for h € [1, dx(u)], j € [0, h] based on Equation (5).
Then, we can calculate Px(u, [y (|X|—1)]) for all u € X.
Two methods are given for the probability calculation of the
vertex in X an the vertex in V\ X, as shown in Equation (5)
and Equation (4) respectively. Equation (4) refers to the
probability calculation method proposed in [12].

4.2 Updating the Probability Value

Given an uncertain graph G(V, E,p) and a node v € V. We
now consider how to update the [y - (|V| — 1)]-probability
of vin G when an edge incident to v was removed. We can
get the following equation that Pg(v,k)=1— " Pr¢
(deg(v) = i) where k = [y - (|[V| — 1)]. If we remove a node u
from V, we update Pg\ (v, k) for all v € V\{u}. As we
know, Prg(deg(v) = k) = Prg\quy(deg(v) = k) - (1 — P(e)) +
Preyuy (deg(v) = k — 1) - P(e) where u is the node removed
from the uncertain graph G and e is the edge between v and
u. We can update Pre g, (deg(v) = k) with the following
equation.

Prg(deg(v) = k) — p(e)(Pre(uy (deg(v) = k — 1))
1—p(e)

P"G\{u}(deg(v) = k) =

(6)

We can set Prg () (deg(v) =0) = %”8:0) and apply
Equation (6) to compute the remaining Pre\ (,y(deg(v) = 1)
for i € [1, [y - (|[V\{u}| —1)] —1]. Then we can get Pg\
(v, [y - (IV\{u}| — 1)]) based on Equation (3). Updating the
[v- (]V\{u}| — 1)]-probability of v in G\{u} globally takes
O([y - (JV| —1)]), which is better than recalculating. There-
fore, the running time of updating the probabilities of the
nodes with removing the connected node u is O([y - (|V|—
1)]|Ng ().

43

For the problem of the k-core mining on the uncertain
graph [12], when vertex u is removed, the probability of all
the other vertices connected to u with a degree no less than k
should be updated again. Different from that, for our problem
of quasi-clique in the uncertain graph, if C(V, E) is the current
subgraph, we need to verify whether the probability that each
vertex has a degree being no less than [y - (|V| — 1)] is greater
than or equal to «. If there is a vertex u that does not satisfy the
condition, we should remove u from C. Combing with Equa-
tion (7), we can find that the probabilities of some vertices’
degree being greater than or equal to [y - (|[V| — 1)] increase
after we removing u. Therefore, for those vertices that have
met the probability requirement before u is removed from C,
even if we remove u, they still meet the requirement. There-
fore, there is no need to update the probabilities of those verti-
ces in this case. Based on this property, we propose a new
updating strategy below to further reduce unnecessary proba-
bility calculations.

Algorithm 4. Update Pr(X, cand(X), Vye, G)

Input: X is a node set; cand(X) is the candidate extension of
X; Vya is the set of removing nodes; G(V, E, p) is an
uncertain graph.

1: s — | X| + |cand(X)|;

2: foru € Vi, do

3: for (u,v) € E(G) do
4:
5

b= Ty (s+Vaal =1 # [y (s + [Vaa| = 2)1;

if delay[v] = NULL and b = true and

Poy(u,[y - (s + [Vaal — 1)]) = @ OR

delay[v] # NULL and b = true then
delay(e] pushlp(ews))

else
delay[e] puship(ews)]
update the Pr(deg(v) = k) for k € [0, [y - (s + |Viu| —
2)] — 1] combining with p’ for p’ € delay[v] based on
Equation (6);

10: G—G- {’U,}7 ‘/del — V:iel - {u}/

First, let us introduce some observations. Given an uncer-
tain graph G(V, E,p) and node v € V. Let e = (u,v) be the
edge between u and v. Let G = (V\{u}, E\{e},p) be the
subgraph of G by removing u from V. If [y - (|V| = 1)] # [y -
(IV\{u}| — 1)]. We can get the following inequality.

Fo(v, [y- (VI =11) =
P (v, [y - (IVI=1)1) +p(e) - Prey (deggy (v) =)
[y - (V\Mudl = D) < Py - (v, [y - ((VM{ud| = 1)

For node v linked to the removing node « and it satisfies
that [y - ([V\{u}| = 1)] # [y - ([V| = 1)], there holds Fg\ .
(0, y- (IV\{u}[= 1) > Pa(v,y - ([V]-1)]) based on Ineg-
uality (4). If Pg(v,[y-([V]—=1)]) >a, then Po (v, [y-
(IV\{u}| = 1)1) = Pe(v,[y- (V] —1)]) > a. So there is no
need to update the probability of v immediately since the
[v- (][V\{u}| — 1)]-probability of v in G\ {u} still satisfies the
constraints of (o, y)-quasi-clique even if u was removed.

If node v satisfies [y - (|V\{u}| = 1)] =[y- (V| -1)], we
need to update the Prg\ () (deg(v) =1i) of v for i € [0, [y-
(IV\{u}| = 1)]] no matter node v satisfies Pg(v, [y (|V]—
1]) > aor Po(v, [y (V] - 1)]) < a.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:56:09 UTC from IEEE Xplore. Restrictions apply.

44

P(vg, [y (IV] = D) = 0.81

delay(ve) = {}
(@)

Fig. 3. lllustration of the probability updating procedure.

(b)

For node v does not link to u, we can always get Pg\j,
(v, Ty - (V\{u} = 1)T) = Pew, [y - (V] = D). I Pa(o, [y-
(IVI-1)1) > «a, the [y-(|[V\{u}| — 1]-probability of v in
G\{u} always satisfies the constraints of («, y)-quasi-clique.

Let u be the node that is inserted into the initial node set
X. For node v incident to v in X, we can update Px(v, [y -
(IX] —1)]) based on Equation (5). For node w that does not
link to w in X, we can calculate Px(w, [y - (|X| —1)]) imme-
diately based on the previously calculation.

Algorithm 4 shows the pseudo-codes of updating the
probabilities. For a node set X and its extensible candidate
set cand(X), we need update the probability values for all
nodes in X U cand(X) utilizing the set of removing nodes
V- Let v be the node in X U cand(X). For node u € Vy,,
there are two updating strategies: (a) there is an edge
between u and v in G; (b) there is no edge between v and v
in G'. For (1), we need check whether delay[v], the set of
nodes incident to v, is empty. If delay[v] is empty, [y - (|[V| —
DI #Ty-(V\{u} =11, Palo,fy-((V)[-D]) 2« or
dealylv] is mot empty, [y-(|V|=1)]# [y - (V\{u}| - 1)],
we can delay the updating of v’s probability and push
p(eny) into delay[v] (lines 3-6). Else, we push p(e,,) into
delay[v] and update the probability of v combining all the
probability values in delay[v] based on Equation (6) (lines 7-
9). For (b), if Pg(v, [y - (V] —1)]) < «, we can immediately
get Pg(v, [y - (J[V\{u}| — 1)]) since we have stored Pr¢(deg
(v) =k)fork € [0, [y-(JV|—1)] — 1]. Suppose that A, is the
number of the neighbors of u in G. Therefore, the process of
updating the probabilities after removing u takes O(A,[y -
(V] = 1)]), and itis no more than O([y - (|V| — 1)]|Ng(u)|)-

Example 6. Let « = 0.8, y = 0.8 and min, = 3. In this exam-
ple, we use the example in Fig. 3to illustrate the efficiency
of Algorithm 4. Fig. 3a illustrates an uncertain graph with
10 nodes. First, we can get the [y - (]V| — 1)]-probability
of v in G which is Pg(vg, [0.8-(10—1)]) =0.81 > 0.8.
Assume X = {v1,v2} and cand(X) = {v1-10}, we can have
that L, and k of vy are 0 and 1 respectively. Then, we
can remove vyy from cand(X) based on Theorem 2. We
can observe that the degrees of v5 and vy are 2, which is
equal to [0.8- (3 —1)] and the probability product of all
the edges connected to vs (or vg) is less than 0.8. So, we
can remove {vs,vg} and push {vs, vy} into delay|vg] since
[0.8-(9—1)] #[08-(8—1)] and [0.8-(8—1)] # [0.8-
(7—1)]. The current X = {v;,v2} and cand(X) = {vs,
vy, Vg, U7, Us }. Next, we push vs into X and we find that
there is no (e, y)-quasi-clique which contains the current
X which means that we can remove vs from cand(X).

P(we, [y - (IVI = D) = 0.81

delay(vs) = {vs, v, v3}

IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 1, JANUARY/FEBRUARY 2023

P(vg, [y - (IV| - D] = 0.88 P(v, [y -(IVI-DD =08

delay(ve) = {} delay(v;) = {vg}

(©) (d

Fig. 3b shows the remaining graph with X = {v;, v2} and
cand(X) = {va, v, v7,vs}. Since [0.8- (7 —1)] # [0.8 - (6—
1)], we push vs into delay[vs].

After that, We find that v, cannot be contained by any
(ar, y)-quasi-clique like v3, which means we can remove
vy from cand(X). Since [0.8 - (5 —1)] = [0.8- (6 — 1)], we
should update Pr(deg(v) = k) for k € [0, 3] with p(e(vs,
v5)), p(e(vy, v6)), pe(vs, v6)) and p(e(vy, vg)) based on the
Equation (6). If we immediately update the k-probability
values of vs when the other nodes are removed, the range
of the k we need to update are [0, 5], [0, 4], [0, 3] and
[0, 3] respectively. We can find that Algorithm 4 reduces
the range of k we need to update.

The remaining graph is shown in Fig. 3c, we find vg
could be removed from cand(X) based on the new prun-
ing method used in the probabilistic graph. Since [0.8 -
(5 - 1)-| 7é |—08 : (4 - 1)-| and PG(XUE(LTLd(X))(v77 |_08 : (5 -
1)1) = Pa(XUcand(x))(v7,4) = 0.8, we can remove vg with-
out updating the k-probability of v; with k= [0.8- (4 —
1)] = 3. Finally, We get the («, y)-quasi-clique as shown
in Fig. 3d, which is {v1, v, vg, v7}.

5 OPTIMIZATIONS

In this section, we describe several pruning techniques used
by existing works. Note that because there are several meth-
ods that are not fully applicable to uncertain graphs, we
have made appropriate adjustments and still described here
as contributions to the existing work. The optimizations can
speed up the enumeration procedure by inserting a set of
nodes directly to the node set X and reduces the number of
iterations.

Theorem 3. Let H = (X, Ex,p) be an («,y)-quasi-clique we
have found in the uncertain graph G. Then for the node set X,
the induced graph G(X) in G is a y-quasi-clique.

Proof. According to Definition 3, we know that P(v, [y -
(IX] = 1)) > e holds for all v € X. Since & € (0,1], we can
get degs(v) > [y - (|X| —1)] for all v € X, which confirms
that G(X) is a y-quasi-clique. O

In [8], Pei et al. developed an upper bound of the diame-
ter of a y-quasi-clique based on y. Consider a deterministic
graph G = (V, E) and twonodesets X C Y C V. IfG(Y) is a
y-quasi-clique, for every node v € (Y — X), we have v €
Nye XN,?(D) where £ is the upper bound of the diameter of a
y-quasi-clique. The nodes that are not in N,cx NS (v) can be
removed from cand(X). The relationship between the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:56:09 UTC from IEEE Xplore. Restrictions apply.

QIAO ETAL.: MAXIMAL QUASI-CLIQUES MINING IN UNCERTAIN GRAPHS

diameter of y-quasi-clique and y is shown in the following
formula:

=1 if1>y>’“
<2 zf:’Ll_y
<3Ly<n 1+1J if§ > yzn%cmd

nmod(y(n—1)+1)=0

diam(G){ < 3lypty) =2 ifs > y 2 Aand

nmod(y(n—1)+1) =1
3Ly<n 1“] zf% > yZ%and
nmod(y(n —1)+1) > 2
<n-1 ify =-.

)

According to [8], we may be interested in y-quasi-cliques
with a reasonably-large y, since the diameter of the y-quasi-
clique changes dramatically with respect to y [8]. Therefore,
Pei et al. [8] suggested that y should be bounded in [0.5,1]. In
this paper, we use [0.5,1] as the value range of y by default.

Given an uncertain graph G = (V, E,p) and a node set
X C V. Based on Theorem 3, Pei et al. used the diameter of a
y-quasi-clique being no more than 2 to get the candidate set
of X with the following formula:

cand(X) = N N (v). 9

veX
The following three lemmas are the versions after appropri-
ate adjustments to the pruning methods in the paper [9],
and the main ideas are still the same as the corresponding
pruning methods in paper [9]. Below, we first introduce the

optimization method to reduce the cost of extending X with
cand(X).

Lemma 2. Given an uncertain graph G(V, E, p) and a node set
X CV, assume that there exists an («, y)-quasi-cliqgue G(Y)
in which G(Y) C G and X CY. For v € X, if degree(v) =

[v - (1X] + Liin — 1)] and PG(Y)(Ua [v - (1X] + Linin — 1)) >
o, then N(v) C Y.
Proof. Let v € X satisfies that degree(v) = [y - (| X| + Lmin —

1)—| and PG(Y)(U7 |—]/ : (‘X| + Linin —]-)-D > a. Node u is a
node such that u € cand(X) and (u,v) € E. Suppose that
u¢Y, then Py(v, [y (|X|+ Lmin —1)]) =0 < a. It con-
tradicts the fact that Y is an («, y)-quasi-clique.]

Similar to Lemma 2, we consider the probability con-
straint for an («, y)-quasi-clique. Given an uncertain graph
G and a candidate node set X for («, y)-quasi-clique, con-
sider a node v € X and another node set Y as X U N(v). If
Powy(v, [y - (|X| + Liin — 1)]) = o, it indicates that all the
neighbors of v should be included in the candidate node set
if v satisfies the probability constraint for (e, y)-quasi-clique.
If any neighbor does not appear in the candidate node set
with v, then v should be removed from the candidates.
Therefore, we have the following lemma.

Lemma 3. Given an uncertain graph G(V, E,p) and a node set
X C V, assume that there exists an (e, y)-quasi-clique G(Y")

in which G(Y) C G and X C Y. Then, for a node v € X, if

degree(v) > [y - (|X| + Lpin —
Lyin —1)]) =, then N(v) C Y.

1] and Fey)(v, [y - (| X] +

45

Proof. Let node u be a node such that u € cand(X) and
(u,v) € E. Suppose that u¢ Y, then Pgy)(v, [y - (|X|+

Lz — 1)]) < Po(xueand(x) ([v-(IX]+ Lmar 1)) =a.
It contradicts the fact that Y is an (a, y)-quasi-clique. O

For nodes satisfy Lemma 2 or Lemma 3, we refer to them
as key nodes. We need to get all the key nodes for a node set
X. If there is a key node v, then we can add the nodes (in
cand(X)) that are adjacent to v into the set X.

Algorithm 5. AAVEnumOpt(X, cand(X), y, o, mins)

Input: X is the initial node set; cand(X) is the candidate
extension of X based on Equation 9; y is the mini-
mum degree threshold; « is the minimum probability
threshold; ming is the minimum size threshold.

Output: the node set R.

1: if |cand(X)| = 0 and G(X) is an («, y)-quasi-cliqgue then

2: R« RUXIif#Y € R,suchthat X CY;

3. return R;

4: if G(X U cand(X)) is an (a, y)-quasi-clique then

5: R« RUXUcand(X)if BY € R, such that

XUcand(X) CY;

return R;

: Lo — min{t|indegmin(X) +t > [y

G — G(X Ucand(X));

: Remove v from cand(X) and put v into Vg if

Pg(xucand(x)) (v, k) < a; [Theorem 2]

10: UpdatePr(X, cand(X), Vau, G');

11: for each node v € X do

12: k, is the maximum value such that

PG(XU(:(),nd(X))(Ua kv) 2 o,

13: kmax — minveka;

14: forv € X do

15: if vis a key node then

16: X <« X U N(v); [Lemma 2, Lemma 3]

17: Find the useless node u of X; Sort the nodes in cand(X)
such that nodes in Ux(u) are after all the other nodes;
[Lemma 4]

18: Update L, and kpqq;

19: if | X| + Lypin <222 4 1 then

20: forall w € cand(X)\Ux(u) do

21: X — XU {w}, cand((X) — cand(X)\{w};

22: cand(X') « ﬂ,eXN Keand(X) (),

23: Vier — Viger U (cand(X)\cand(X’)),

24: Update Pgx (v, [y - (| X' = 1)]), Vv € X" and

UpdatePr(X', cand(X"), Vger, G');
25: AdvEnumOpt(X', cand(X'"), y, o, mins);
26: Return R;

X+t =11E

o PN

Lemma 4. Given an uncertain graph G(V, E,p). Let X be the ini-
tial node set and cand(X) be the candidate extension of X. If [y -
(i = 1)1 # [y - 1] holds for all i € [|Lym| + [X| + 1,520 4 1],
then we can get node v € cand(X) and Pg(xucand(x)) ([y -
(IX| + |eand(X)| — 1)]) > . If Yo € X and (v,u) ¢ E, then
Pe(xUcand(x)) (Vs [v - (| X] + |cand(X)| — 1)]) > a. For a node
set 'Y such that G(Y) is an (o, y)-quasi-cligue and Y C
(X U (cand(X) N Ng(w) N (Nyexand(u) ¢ £(Na(0)))), G(Y) is
not a maximal (e, y)-quasi-clique.

Proof. Since G(Y) is an (a,y)-quasi-clique, Pgy)(v, [y -
(Y1-11) > o holds for all v € Y. Then we w111 dlscuss
whether G(Y') = G(Y U {u}) is an («, y)- quasi-clique. For

Authorlzed licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:56:09 UTC from IEEE Xplore. Restrictions apply.

46

the node u, we can have P, (u, [v-(Y' =11 >
PG(XUC&?L(I(X))(”? ’—y : (|X‘ + |ccmd(X)\ - lﬂ) > based on
Equation (7). For the node v such that (u,v) ¢ E we can
have PG(Y’)(Ua [‘V ' (|Y ‘ - 1)—|) > PG(XUcand(X))(Ua []/ ' (‘X| +
|cand(X)| — 1)]) > «. The same result holds for v such
that (u,v) € Fandv e Y — X. O

Let Ux(u) denote the set of nodes with respect to X, and
UX(U) = Cand(X) N NG‘ (u) N (ﬁUGXand(uﬁv) ¢ E(Né (U)))) We
can find a node u that maximize the size of Ux(u), and u is
an useless node. Then, we can make use of the nodes in
cand(X)\Ux(u) to extend X.

Based on the above lemmas, we can obtain our optimized
algorithm which is shown in Algorithm 5. We first check if
X or X Ucand(X) is a maximal (e, y)-quasi-clique. If it is,
we put X into the result set R and return R (lines 1-6). Then,
we remove some nodes that are not contained by any
(e, y)-quasi-cliques based on Theorem 2 (lines 7-10). Next,
we derive the upper bound of the («, y)-quasi-clique’s size
which contains X based on Lemma 1 and stop the expan-
sion of X based on Property 1 (lines 11-13). According to
Lemmas 2 and 3, we can find all key nodes in X and put all
the neighbors of the key nodes into X (lines 14-16). For the
vertex set X, we finds its useless node u, and put the nodes
in Ux(u) after all the other nodes in cand(X) (line 15). Only
the nodes in cand(X)\Ux(u) are used to extend X. If | X| +
Lin < k”)’j"" +1, the algorithm recursively calls itself to
expand X until there is a result set R being returned (lines
19-26). The time complexity of Algorithm 5 is O(n®) where
n is the number of the nodes in the uncertain graph.

6 EXPERIMENTS

6.1 Experimental setup

To enumerate all maximal (e, y)-quasi-cliques, we implement
three algorithms called Baseline, SeBaseline, AdvEnum, and
AdvEnum+. Baseline is based on NaiveEnum algorithm,
which is shown in Algorithm 1 and Algorithm 2. SeBaseline is
another baseline approach with the following steps (1) Find
all the y-quasi-cliques in the resulting deterministic graph by
ignoring all edge probabilities of the given uncertain graph;
(2) Process all y-quasi-clique and filter out all y-quasi-clique
that do not satisfy Definition 3; (3) Return all the maximal
y-quasi-clique as the maximal (o, y)-quasi-cliques. AdvEnum
is the approach with the AdvEnum algorithm, as shown in
Algorithm 3. AdvEnum+ is AAvEnumOpt with the probabil-
ity update method proposed in Section 5.

All algorithms are implemented in C++. All the experi-
ments are conducted on a server with two Intel(R) Xeon(R)
Silver 4110 CPU @ 2.10GHz CPUs and 256 GB main mem-
ory. CeontOS 7.4 X86_64 operating system with Linux ker-
nel 3.10.0.

Datasets. As shown in Table 2, we use five real-world graphs
to evaluate the efficiency of all the algorithms in the experi-
ments. The detailed information of these datasets are described
as follows. CORE is a protein-protein interaction (PPI) network
provided by Krogan et al. [20]. The data set contains 2,708
nodes and 7,123 edges, where the node denotes the protein
and the edge denotes the interaction between two proteins.
Each edge is associated with a probability, which represents
the probability of a connection between the corresponding two

IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 1, JANUARY/FEBRUARY 2023

TABLE 2

Datasets
Dataset n m dimaz
CORE 2,708 7,123 141
Bitcoin 5,881 35,592 795
AskUbuntu 157,522 455,691 5,401
Amazon 334,863 925,872 549
Hyves 1,402,673 2,777 419 31,883

proteins. The probabilities of edges are distributed in the
[0.27, 0.98]. There are around 20 percent edges that have a
probability no less than 0.98, an there is no edge with probabil-
ity less than 0.27. Bitcoin and AskUbuntu can be downloaded
from the Stanford network dataset collection (snap.stanford.
edu). Bitcoin is a weighted graph and AskUbuntu is a tempo-
ral graph. For these two datasets, we adopt a standard method
used in [21], [22] to generate the probabilistic graphs for Bitcoin
and AskUbuntu. In particular, for each edge (u,v), we make
use of an exponential cumulative distribution with mean A =
2 to the weight of (u, v) to generate a probability (i.e., p(u,v) =
1 — exp(—wyy/A) [21], [22]). Hyves is an unweighted network
graph which can be downloaded from the Koblenz Network
Collection (http:/ /konect.cc/networks/). For this unweighted
network, we generate a probability for each edge following a
uniform distribution. The statistic information of our all data-
sets are provided in Table 2.

Parameters. There are three parameters in our algorithms:
o, y and min,. The parameter « is chosen from the interval
[0.6, 0.9] with a default value of @ = 0.7. y is selected from
the interval [0.6, 0.9] with a default value of y = 0.8. min, is
a positive integer with a default value of 8. Unless otherwise
specified, the values of the other parameters are set to the
default value when varying a parameter in experiments.

6.2 Effectiveness testing

In this section, we conduct a case study on a protein-protein
interaction (PPI) network to evaluate the effectiveness of the
proposed algorithms. Following [23], we used a PPI network
CORE which is an uncertain graph provided by Krogan et al.
[20], because we can obtain the ground truth clustering results
on the CORE dataset on the basis of the MIPS protein database
[23]. CORE contains 2,708 nodes and 7,123 edges where a node
represents a protein and each edge represents the interaction
between two proteins. Based on the ground truth, we are capa-
ble of computing the number of the true positive (ITP), the
number of the false positive (FP), as well as the precision (PR =
TP/(TP+FP)) obtained by a variety of algorithms. More specifi-
cally, TP represents the number of correctly matched interac-
tion in predicted complexes with that in MIPS, and FP
represents the total number of interactions in predicted com-
plexes minus TP. We compute TP, FP and PR with the method
used by Kollios et al. [23]. We compare the proposed algorithm
(AdvEnum+) with two state-of-art protein complex clustering
algorithms USCAN and PCluster based on the TP, FP and PR
metrics. For USCAN and PCluster, we adopt the default
parameter values as used in their original experiments. The

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:56:09 UTC from IEEE Xplore.” Restrictions apply.

QIAO ETAL.: MAXIMAL QUASI-CLIQUES MINING IN UNCERTAIN GRAPHS

TABLE 3
Precision of Different Algorithms
Algorithms Results TP FP PR
USCAN 456 1,086 2,037 0.348
PCluster 475 1,027 3,021 0.266
AdvEnum+ 105 2,151 6,051 0.355

parameters of AdvEnum are also set to default values (i.e., a« =
0.7, y = 0.8 and min, = 8). Table 3 shows the results of differ-
ent algorithms. As can be seen, our approaches to find maxi-
mal («, y)-quasi-cliques performs better than the other two
baseline algorithms in terms of TP, FP and PR. For example,
the precision of AdvEnum+ is 0.355, while the precision of
USCAN and PCluster is 0.348 and 0.266. The reason is that
each complex may be a small cohesive subgraph, which can be
well characterized by a maximal («, y)-quasi-clique. Also both
USCAN and PCluster are clustering-based algorithms which
may generate large-size clusters, thus their precision is smaller
than ours.

Precision With Varying Parameters. Here we study how the
parameters affect the clustering qualities of our algorithm.
Fig. 4 shows the precision of our algorithm with varying
parameters on the CORE dataset. As we can see from the
Fig. 4a, the precision of our algorithm is relatively robust with
varying «. This is because the probabilities of the edges in
CORE are very large, thereby the maximal («, y)-quasi-cliques
that we are looking for have high probabilities. Thus, the max-
imal (e, y)-quasi-cliques cannot be significantly affected by
the parameter «. From Figs. 4b and 4c, we can see that the pre-
cision of our algorithm increases with y (or min,) increasing.
This is because with a larger y or min,, we may prune more
nodes, and therefore the maximal (e, y)-quasi-cliques will be
highly reliable. The results shown in Fig. 4 confirm that our
approach to find maximal (o, y)-quasi-cliques has a good per-
formance for protein complexes detection.

6.3 Efficiency testing

In this section, we evaluate the efficiency of our algorithms
by considering running time, pruning effect, the effect of
probability distribution, and scalability. Combining the run-
ning time of the four approaches shown in Fig. 5 on the data
sets CORE and Bitcoin, we can find that SeBaseline and
Baseline have the same performance. Neither of them can
get results. In addition, the last two approaches AdvEnum
and AdvEnum+, both calculate and update the probability
during the operation of the algorithms, and Baseline is also
performed in this order. So we do not consider SeBaseline
in the experimental evaluation.

Runtime of Baseline, AdvEnum and AdvEnum+. We evaluate
the runtime of Baseline, AdvEnum and AdvEnum-+ for enu-
merating all the maximal (e, y)-quasi-cliques in our experi-
ments. Note that we choose the parameter min, from the
interval [4, 28] with a default value 26 for AskUbuntu and
Hyves since these two datasets are too dense to deal with a
small min,. Fig. 5 shows the runtime of these three algorithms
on all datasets with varying values for «, y and min, respec-
tively. As can be seen, AdvEnum is significantly faster than

47

PCluster —&—
0.8 USCAN --4 - 0.8

PCluster —&—
USCAN --4 -

5 AdvEnum+ % g AdvEnum+ ¥
2 06 206

B 04 gk 8 041 g gk

R | R Y A a4 a
& 02 =02
0 0

06 07 08 09 06 07 08 09

o Y

(a) Bitcoin (vary) (b) Bitcoin (vary -)

1
PCluster —&—
0.8 USCAN --4&-

AdvEnum+ %
0.6

precision

047 gt TR A
0.2

(c) Bitcoin (vary mins)

Fig. 4. Precision of different algorithms with varying parameters.

Baseline, and AdvEnum+ is consistently faster than AdvEnum
with all parameters. These results confirm that our pruning
techniques and probability update method are effective in enu-
merating maximal («, y)-quasi-cliques on uncertain graphs. In
general, the runtime of AdvEnum and AdvEnum+ decrease
as «, y or min, increases. This is because when these three
parameters change, the AdvEnum and AdvEnum+ algorithms
can remove much more nodes from the uncertain graph or
prune the search space earlier during the enumeration proce-
dure. However, the runtime of AdvEnum and AdvEnum+ in
CORE show different trends. We can see that the running time
of AdvEnum and AdvEnum+ increases as « increasing. This is
because the probability associated with the edges in CORE is
very high. In this scenario, during the enumeration procedure,
some (o, y)-quasi-cliques contains a large portion of nodes in
CORE. Thus, the enumeration procedure can terminate early.
This is why the runtime of AdvEnum and AdvEnum+
increase as « increases. As shown in Fig. 5, we can see that the
execution time gap between AdvEnum and AdvEnum+
becomes smaller as these three parameters increase. This is
because as these parameters increase, the number of remaining
nodes after pruning increases, which suggests that a fewer
nodes can be removed with our optimization techniques dur-
ing the enumeration procedure. As a result, the running time
of AdvEnum and AdvEnum+ are gradually approaching as
these parameters increase.

Pruning Effect of Baseline and AdvEnum. In this section, we
evaluate the number of remaining nodes after we prune
nodes with the pruning methods in Baseline and AdvEnum
respectively. Fig. 5 shows the number of remaining nodes
of NaiveEunm and AdvEnum on Amazon with varying val-
ues of «, y and min, respectively. As shown in Figs. 6b and
6¢c, we can see that when y > 0.8 or mins; > 8, quite a few
nodes can be removed after we prune nodes using the prun-
ing methods in Baseline and AdvEnum respectively. This is
why the runtime of three algorithms has a cliff-like fall in
Fig. 5d, 5i, and 5n. Additionally, we can also observe that
the pruning performance of AdvEnum is much better than
Baseline on Amazon, which is consistent with our previous
results.

Effect of Different Probability Distributions. Here we study the
performance of our algorithms with different probability dis-
tributions. As introduced in the previous experiments, we
generate the probability on each edge by an exponential

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:56:09 UTC from IEEE Xplore. Restrictions apply.

48

IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 1, JANUARY/FEBRUARY 2023

INF I INF —a s a s INF —4 INF —a s s s
18K Bascline —&— 18K .
0 8 Baseline —&—) n Ad\?lSE::::re\ A 2150 N\) A Baseline
2 ¢ | SeBaseline - J- 2 2 AdvEnum-+ - 2 214k & AdvEnum --4 -
z AdvEnum -5 A < Zl4k A vEnum —~ Basel A ~ <> AdvEnum+ ¥
5 AdvEnum+ —— . o 10 & A A 5 . 0100 aseline 5
g 4 A N g fT‘*"*'\ A g * xA =1 AdvEnum --4A - EIOk A
g g 8 aseline. XA= - & B : x E .
ool kT = 5[SeBaseline - {3- * =10k LA £ 50 AdvEnum+ ¥ s %o
AdvEnum -4 Hel AL) B
0 0 LAdvEnums 6k KT o L% " w - 6k Ry
06 07 08 09 06 07 08 09 06 07 08 09 06 07 08 09 06 07 08 09
o o o o o
(a) CORE (vary o) (b) Bitcoin (vary «) (c) AskUbuntu (vary) (d) Amazon (vary o) (e) Hyves (vary)
INF —@& & & & INF —® & = & INF —& s A s INF —a A INF —a s s s
20 Baseline —4— A Baseline —&— * Baseline —&—
o o 60 Baseline D0k | A AdvEnum --& - o 1.5k 8 dvEnum --& - ‘ou5k AdvEnum --4 -
2 Baseline —&— g SeBaseline - 13- 2 x° AdvEnum+ - 2 s, Ad\Enumt ¥ 2 . AdvEnumt -
230 SeBascline - £J- 4! A st 2 16k A o Ik N 230k
15} Adv] - 5} num — 5} AL 5 5}
E20] & AdvEmm: % £ Ky, A X £ x e g ¥ 2 -
£ 10 \,..\‘Q =20 S S12k . ‘_;%\\A & s00 3 S5k ﬁ
i SR Fereng 8k * TR
0 0 0 % * 0
06 07 08 09 06 07 08 0.9 06 07 08 09 06 07 08 09 06 07 08 09
Y Y Y Y v
(f) CORE (vary ~) (g) Bitcoin (vary) (h) AskUbuntu (vary ~) (i) Amazon (vary ~) (j) Hyves (vary)
INF [Ewm INF e E wm INF A s s INF s INF A s A s
Baseline —&— aseun B Baseline —&—
16 Bascline —&— 330 Bascline —A—| D120K |y AdvEnum - -4 - UK A AdvEnum)\ oL 60k ke AdvEnum - -4 -
2l 4 SeBaseline - {1- 2 A SeBaseline - {1 2 N AdvEnum+ -3~ 3 - AdvEnum\ X 2 AdvEnum+ -
) AdvEnum -2 Z AdvEnum -2) B 23K B ‘A 2120k
> *. A AdvEnams —K 0 20 | K ITA L AdvEnms —K- o 80k o * g o WA
g 8 KA g X £ n g 2 RIS g 80k %o
£y K N 10 Siges | B 40K * 1?%‘_?77% =k & a0k Q}%
0 0 0 0 Rooly 0
4 5 6 7 8 4 5 6 7 8 4 0 16 22 28 4 5 6 7 8 4 10 16 22 28
lTlll"lS l']"lll"lS Hlll’ls mms mms
(k) CORE (vary mins) (1) Bitcoin (vary mins) (m) AskUbuntu (vary ming) (n) Amazon (vary min,) (0) Hyves (vary ming)
Fig. 5. Runtime of different algorithms for mining all maximal («, y)-quasi-cliques.

distribution with a parameter X\. We first investigate the
impact of parameter) for Baseline, AdvEnum and AdvEnum
+ (vary A from 2 to 5), respectively. Second, we generate the
edge probabilities for Bitcoin with a uniform [0, 1] distribu-
tion and evaluate the performance of the three algorithms on
this dataset. In Fig. 7a, we can find that the number of remain-
ing nodes obtained by AdvEnum decreases as) increases.
This is because the probability of edge decreases as A
increases, thus more nodes can be removed with the pruning
methods in AdvEnum. In Fig. 7b, we are able to observe that
the runtime of AdvEnum (or AdvEnum+) decreases with an
increasing A, due to the probabilities of edges reducing. In
addition, Fig. 7b also shows that the runtime gap is getting
larger as A increases. This is because the number of nodes that
are removed during the enumeration procedure increases
with) increasing.

Scalability Testings. We use the Bitcoin and Hyves datasets
to evaluate the scalability of all the algorithms. We generate
several subgraphs by randomly sampling 20-80 percent of the

Baseline —&—]| Baseline —&—
500 AdvEnum --4 - 60k AdvEnum -4 -
g 400 W B AdvEnum+ -
g 300 “Zg
Z 200 20k
100 Hooms Hoee B
0 0 =
06 07 08 09 06 07 08 09
o v
(a) Amazon (vary o) (b) Amazon (vary v)
180k
Baseline —&—
140K AdvEnum --4 -
P AdvEnum+ %
5100k
o
Z sk | E
20k
g *
6 7 .08 9
ming

(c) Amazon (vary min)

Fig. 6. Number of remaining nodes.

nodes (or edges) from these two datasets and evaluate the
time overheads of our algorithms on these subgraphs. We set
the parameters for all algorithms with the default values. As
shown in Fig. 8, we can see that the running time of AdvEnum
and AdvEnum+ increase smoothly with respect to |V] and | E|,
which indicates that our algorithms are scalable when han-
dling real-world graphs.

1200 f & & & & a INF A A A A A
Baseline —4— — Baseli A
2 800 AdvEnum -2 - g AdvEnum A -
,8 AdvEnum+ K- :; 10 AdvEnum+ 3K
AL
Z 400 B E s 8 AL,
B ¥y Ta
* Ko
0 0
2 3 4 5 6 2 3 4 5 6
A A
(a) number of remaining nodes (b) runtime of three algorithms

Fig. 7. Effect of different probability distribution (Bitcoin).

INF INF
A A A A A
15 Baseline —&— S5 Baseline —&—
3 AdvEnum --4 - g AdvEnum --4 -
z AdvEnum+ -3~ < AdvEnum+ -3
g10 JN g10 PN
=] A - = s g
E s X £ 5 X
g R R
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
\4 [E|
(a) Bitcoin (varying | V) (b) Bitcoin (varying |E|)
INF — 1 INE
12k Baseline —a— ok f Baseline —4—
53) AdvEnum --£ -
2 AdvEnum --4& - A 53 v NN
LK AdvEnumt KooK 2 9k AdvEnum K X
= A = I
3k e & 3k 4
0 o
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
VI [E|
(c) Hyves (varying |V|) (d) Hyves (varying | E|)

Fig. 8. Scalability of various algorithms.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:56:09 UTC from IEEE Xplore. Restrictions apply.

QIAO ETAL.: MAXIMAL QUASI-CLIQUES MINING IN UNCERTAIN GRAPHS

7 RELATED WORK

Uncertain Graph Mining. Mining uncertain graphs has
attracted much attention in the database and data mining
communities [12], [13], [15], [16], [24], [25], [26], [27], [28],
[29]. Zou et al. [27] proposed an approximate algorithm to
mine frequent subgraphs from an uncertain graph database.
Yuan et al. [28] proposed an efficient subgraph search
method on large uncertain graphs. Lin et al. [25] proposed
an algorithm to find reliable clusters in an uncertain graph.
Bonchi et al. [12] studied the k-core decomposition problem
on an uncertain graph. Huang et al. [13] studied the k-truss
mining problem on an uncertain graph by proposing a new
concept (k, y)-truss. Gao et al. [26] proposed a new solution
to find RkNN in an uncertain graph. Qiu ef al. [19] studied
the problem of graph structural clustering on an uncertain
graph. Li et al. [16] study the maximal clique search problem
on an uncertain graph. However, the problem of mining
quasi-cliques from an uncertain graph has not been studied
previously.

y-Quasi-Cliqgue Mining. y-quasi-clique mining is an inter-
esting problem in the field of graph mining. As we know,
the first study of the quasi-clique mining problem on a
deterministic graph is conducted by Matsuda et al.[30] who
introduce a subgraph structure called p-quasi complete
graph, which is the same as the current definition of
y-quasi-clique in a deterministic graph. They proposed an
approximation algorithm to get all the nodes with a mini-
mum number of p-quasi complete graphs. Abello et al.
defined a y-clique in a graph which is a connected subgraph
with edge density no less than y in [31]. An approximation
algorithm was proposed by them to find all the y-cliques.
All the above studies mine quasi-cliques from a single
graph. There are some studies that mine subgraph patterns
from a graph database which includes a set of graphs. Yan
et al. [32] investigated the problem of mining frequent graph
patterns with connectivity constraints from a graph data-
base. Different from the above work, some papers mine the
quasi-cliques from multiple graphs. Pei et al. [8] proposed
an algorithm called Crochet which exploits several interest-
ing and effective techniques to efficiently mine cross-graph
quasi-cliques. Wang et al. [33] investigated the frequent
closed clique mining problem from a graph database. They
developed an algorithm called CLAN to compute all the fre-
quent closed cliques. Since cliques have the downward clo-
sure property, therefore mining cliques is much easier than
mining quasi-cliques. Zeng et al. [34] investigated the fre-
quent closed quasi-clique mining problem from graph data-
bases. They proposed an efficient algorithm called Cocain
to solve the problem with some interesting pruning techni-
ques. Liu et al. [9] proposed an algorithm called Quick with
several interesting pruning methods to find maximal quasi-
cliques from undirected graphs. They also proposed several
effective pruning techniques to reduce the search space.
Although these algorithms are very efficient in practical,
they are only work on deterministic graphs, and they cannot
be directly used for uncertain graphs.

8 CONCLUSION

In this paper, we study the problem of mining maximal
(@, y)-quasi-cliques from an uncertain graph. We propose a

49

basic enumeration approach to find all the maximal («, y)-
quasi-cliques, and a more efficient algorithm with early termi-
nation and candidate set reduction pruning techniques. We
also propose a dynamic programming framework to update
the probability, as well as several optimization techniques to
further improve the efficiency. Extensive experiments on large
real networks demonstrate the effectiveness and efficiency of
our solutions. However, the performance of our algorithm is
not good enough in the dense uncertain graphs. Our future
works are as follows: (1) Enumerating the top-k («, y)-quasi-
cliques on uncertain graphsc combining the scoring mecha-
nism; (2) Mining the subgraph with another dense subgraph
model on uncertain graphs, such as k-plex.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC under Grants
61772346, 61732003, U1809206, 61932004, and 61702435 and
in part by the Fundamental Research Funds for the Central
Universities under Grant N181605012.

REFERENCES

[1] V. Batagelj and M. Zaversnik, “An o(m) algorithm for cores
decomposition of networks,” 2003, arXiv:cs/0310049.

[2] R.-H.Lj, J. X. Yu, and R. Mao, “Efficient core maintenance in large
dynamic graphs,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 10,
pp- 2453-2465, Oct. 2014.

[3] X.Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-
truss community in large and dynamic graphs,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2014, pp. 1311-1322.

[4] L. Qin, R-H. Li, L. Chang, and C. Zhang, “Locally densest sub-
graph discovery,” in Proc. 21st ACM SIGKDD Int. Conf. Knowl. Dis-
cov. Data Mining, 2015, pp. 965-974.

[5] R.-H. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community
search in large networks,” Proc. VLDB Endowment, vol. 8, no. 5,
pp- 509-520, 2015.

[6] C.Lu,]J. X Yu, H. Wei, and Y. Zhang, “Finding the maximum cli-
que in massive graphs,” Proc. VLDB Endowment, vol. 10, no. 11,
pp. 1538-1549, 2017.

[7]1 R-H. Li ef al, “Skyline community search in multi-valued
networks,” in Proc. Int. Conf. Manage. Data, 2018, pp. 457-472.

[8] J. Pei, D. Jiang, and A. Zhang, “On mining cross-graph quasi-
cliques,” in Proc. 11th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2005, pp. 228-238.

[91 G. Liu and L. Wong, “Effective pruning techniques for mining

quasi-cliques,” in Proc. Eur. Conf. Mach. Learn. Knowl. Discov. Data-

bases, 2008, pp. 33-49.

E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time

complexity for generating all maximal cliques,” in Proc. Int. Com-

put. Combinatorics Conf., 2004, pp. 161-170.

J. Cheng, L. Zhu, Y. Ke, and S. Chu, “Fast algorithms for maximal

clique enumeration with limited memory,” in Proc. ACM SIGKDD

Int. Conf. Knowl. Discov. Data Mining, 2012, pp. 1240-1248.

F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich, “Core

decomposition of uncertain graphs,” in Proc. 20th ACM SIGKDD

Int. Conf. Knowl. Discov. Data Mining, 2014, pp. 1316-1325.

X.Huang, W. Ly, and L. V. S. Lakshmanan, “Truss decomposition

of probabilistic graphs: Semantics and algorithms,” in Proc. Int.

Conf. Manage. Data, 2016, pp. 77-90.

A. P. Mukherijee, P. Xu, and S. Tirthapura, “Mining maximal cli-

ques from an uncertain graph,” in Proc. IEEE 31st Int. Conf. Data

Eng., 2015, pp. 243-254.

Z. Zou, J. Li, H. Gao, and S. Zhang, “Finding top-k maximal cli-

ques in an uncertain graph,” in Proc. IEEE 26th Int. Conf. Data

Eng., 2010, pp. 649-652.

R.-H. Li, Q. Dai, G. Wang, Z. Ming, L. Qin, and]. X. Yu, “Improved

algorithms for maximal clique search in uncertain networks,” in

Proc. IEEE 35th Int. Conf. Data Eng., 2019, pp. 1178-1189.

S. V. Sanei-Mehri, A. Das, and S. Tirthapura, “Enumerating

top-k quasi-cliques,” in Proc. IEEE Int. Conf. Big Data, 2018,

pp. 1107-1112.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:56:09 UTC from IEEE Xplore. Restrictions apply.

50

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

N. N. Dalvi and D. Suciu, “Efficient query evaluation on probabi-
listic databases,” in Proc. 13th Int. Conf. Very Large Data Bases,
2004, pp. 864-875.

Y-X. Qiu et al, “Efficient structural clustering on probabilistic
graphs,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 10, pp. 19541968,
Oct. 2019.

N. J. Krogan et al., “Global landscape of protein complexes in the
yeast saccharomyces cerevisiae,” Nature, vol. 440, no. 7084,
pp. 637-643, 2006.

M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “k-nearest
neighbors in uncertain graphs,” Proc. VLDB Endowment, vol. 3,
no. 1-2, pp. 997-1008, 2010.

R. Jin, L. Liu, B. Ding, and H. Wang, “Distance-constraint reach-
ability computation in uncertain graphs,” Proc. VLDB Endowment,
vol. 4, no. 9, pp. 551-562, 2011.

G. Kollios, M. Potamias, and E. Terzi, “Clustering large probabilistic
graphs,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 2, pp. 325-336,
Feb. 2013.

R. Jin, L. Liu, and C. C. Aggarwal, “Discovering highly reliable
subgraphs in uncertain graphs,” in Proc. 17th ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2011, pp. 992-1000.

L. Lin, R. Jin, C. Aggarwal, and Y. Shen, “Reliable clustering on
uncertain graphs,” in Proc. IEEE 12th Int. Conf. Data Mining, 2012,
pp- 459-468.

Y. Gao, X. Miao, G. Chen, B. Zheng, D. Cai, and H. Cui, “On effi-
ciently finding reverse k-nearest neighbors over uncertain
graphs,” VLDB |., vol. 26, no. 4, pp. 467-492, 2017.

Z. Zou, H. Gao, and]. Li, “Discovering frequent subgraphs over
uncertain graph databases under probabilistic semantics,” in Proc.
16th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2010,
pp. 633-642.

Y. Yuan, G. Wang, H. Wang, and L. Chen, “Efficient subgraph
search over large uncertain graphs,” Proc. VLDB Endowment,
vol. 4, no. 11, pp. 876-886, 2011.

Y. Yuan, G. Wang, L. Chen, and H. Wang, “Efficient subgraph
similarity search on large probabilistic graph databases,” Proc.
VLDB Endowment, vol. 5, no. 9, pp. 800-811, 2012.

H. Matsuda, T. Ishihara, and A. Hashimoto, “Classifying molecu-
lar sequences using a linkage graph with their pairwise sim-
ilarities,” Theor. Comput. Sci., vol. 210, no. 2, pp. 305-325, 1999.

J. Abello, M. G. C. Resende, and S. Sudarsky, “Massive quasi-cli-
que detection,” in Proc. Latin Amer. Symp. Theor. Inform., 2002,
pp. 598-612.

X. Yan, X. J. Zhou, and J. Han, “Mining closed relational graphs
with connectivity constraints,” in Proc. 11th ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2005, pp. 324-333.

J. Wang, Z. Zeng, and L. Zhou, “CLAN: An algorithm for mining
closed cliques from large dense graph databases,” in Proc. 22nd
Int. Conf. Data Eng., 2006, p. 73.

Z. Zeng,]. Wang, L. Zhou, and G. Karypis, “Coherent closed
quasi-clique discovery from large dense graph databases,” in
Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2006, pp. 797-802.

Lianpeng Qiao received the BS and ME degrees,
in2014 and 2017, respectively, in computer science
from Northeastern University, China, where he is
currently working toward the PhD degree. His
research interests include social network analysis
and data-driven graph mining.

IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 1, JANUARY/FEBRUARY 2023

Rong-Hua Li received the PhD degree from the
Chinese University of Hong Kong in 2013. He is cur-
rently an associate professor with the Beijing Insti-
tute of Technology, Beijing, China. His research
interests include graph data management and min-
ing, social network analysis, graph computation sys-
tems, and graph-based machine learning.

Zhiwei Zhang received the PhD degree from the
Chinese University of Hong Kong in 2014. He is
currently a professor with the Beijing Institute of
Technology, Beijing, China. His research interests
include blockchain, social network analysis, dis-
tributed systems, and graph-based machine
learning.

Ye Yuan received the BS, MS, and PhD degrees in
computer science from Northeastern University, in
2004, 2007, and 2011, respectively. He is currently
a professor with the Department of Computer Sci-
ence, Beijing Institute of Technology, Beijing, China.
His research interests include graph databases,
probabilistic databases, and social network
analysis.

Guoren Wang received the BSc, MSc, and PhD
degrees from the Department of Computer Sci-
ence, Northeastern University, China, in 1988,
1991, and 1996, respectively. He is currently a
professor with the Department of Computer Sci-
ence, Beijing Institute of Technology, Beijing,
China. He has authored or coauthored more than
100 research papers. His research interests
include query processing and optimization, bioin-
formatics, high dimensional indexing, parallel
database systems, and cloud data management.

Hongchao Qin received the BS degree in mathe-
matics and ME degree in computer science, in
2013 and 2015, respectively, from Northeastern
University, China, where he is currently working
toward the PhD degree. His research interests
include social network analysis and data-driven
graph mining.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:56:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

